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We created a stochastic version of the severity reducing vaccine (V ESP ) model that allows for both stochasticity
in the disease and the observation processes. We assumed that the transitions between states followed an Euler-
Multinomial process (i.e., exponentially distributed sojourn times),1 and that cases at time t (observations) are
distributed as:

Cases(t) ∼ NegBinom(ρI(t), θ)

where ρ is the observation fraction, θ is the dispersion parameter, and I(t) is the number of infectious individuals
at time t. All fitting and simulations were performed using the pomp package (version 0.49-2) in R.2, 3

Zimbabwe, 2008/09

Country-wide data from the 2008-2009 cholera epidemic in Zimbabwe came from the authors of Reyburn et al.4

Country-level data was used in this exercise due to the unavailability of adequate city-level data, as in the other
illustrative examples. We fit this model with maximum-likelihood via iterated filtering (using the mif2 algorithm,
an improved version of that described in Ionides et al5) starting at the first week of the data. We fit two parameters
in this model, the transmission rate (β), and the duration of infectiousness (1/γ), and three initial conditions, the
number of infectious (I(0)), exposed (E(0)), and susceptible (S(0)) individuals at the time the first case was
observed. Other parameters were based on published literature or expert opinion. Parameter values are shown in
Table S3-1.

In fitting this model we first used a trajectory matching algorithm implemented in pomp to get to values of the
parameters that could come close to reproducing the observed epidemic curve. We perturbed these parameter
values to get 10 sets of initial parameters and ran 10 parallel mif processes (each with 5000 particles) with a
hyperbolic cooling schedule. We assessed convergence visually and started another mif process with the run with
the highest log-likelihood until convergence. We started our forward simulations at week 16 of the epidemic
(Figure S3-1) when vaccination was assumed to start. The state of the system at the start of simulations was
estimated with a particle filter.

Table S3-1: Parameters for stochastic model fit to Zimbabwe. Note that the time unit is weeks for this model.
The initial susceptible fraction of the population was calaibrated using a modified mif algorithm within the pomp
package and found to be 0.85 in Zimbabwe.

Parameter Desc. Value (Nominal 95% CI) Source
β Transmission parameter 4.34 (3.29-5.03) fit
γ Rate of recovery from infectiousness (week−1) 3.74 (2.81-4.81) fit
σ Rate of becoming infectious (week−1) 5.00 6

θ Dispersion parameter for reporting 10 assumed
ρ Mean probability of an infection being observed 0.03 7
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Figure S3-1: Fit of model to epidemic data (from4)
from Zimbabwe.
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Figure S3-2: Distribution of final epidemic size of
simulations compared to the reported number of
cholera cases in Zimbabwe (orange line)
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Figure S3-3: Illustration of individual simulation trajectories in unvaccinated and vaccinated (one and two-
dose campaigns) scenarios in Zimbabwe. Bold lines represent the mean of simulations (as shown in the main
manuscript) and lighter lines represent individual simulation trajectories.

In the main text we present vaccination simulations started on one specific day that we believed to be feasible,
however, many factors contribute to when a vaccination campaign begins. Table S3-2 shows the cases averted
from one and two dose campaigns with different vaccination delays to give a sense for how this the differential
impacts may differ from those presented in the main text.
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Table S3-2: Outcomes from one- and two-dose vaccination simulations in Zimbabwe starting at alternate times
in the epidemic ranging from 6 to 26 weeks after the first case was reported.

mean (95% PI) mean (95% PI)
vaccination start week cases averted with one-dose ratio of cases averted 1-dose to 2-dose

6 100,531 (86,432-115,759) 1.05 (1.03-1.07)
10 94,108 (79,947-109,471) 1.09 (1.06-1.13)
14 80,946 (54,068-96,494) 1.14 (1.06-1.23)
18 60,411 (35,644-76,400) 1.16 (0.97-1.35)
22 33,542 (19,356-48,149) 1.23 (0.80-1.97)
26 13,585 (4,729-22,720) †

†In some simulations there were no cases averted in the two-dose scenario so this ratio is not calculated

Table S3-3 shows the results from simualtions where a single dose is 50% more and 50% less protective than
in the main analysis. This highlights that a more protective single dose will shift the preferred strategy towards
the use of one dose where as a less protective single dose does the opposite. However, even with a vaccine with
22% efficacy, we find that there is no significant difference between the cases averted with one- and two-dose
regimens.

Table S3-3: Results Cases Averted with Alternative RSEs in Zimbabwe.

RSE (1-dose VE) Mean Cases Averted (95% PI) Ratio of Cases Averted (95% PI)
0.28 (0.22) 45,356 (28,917-62,526) 0.82 (0.63-1.01)
0.86 (0.83) 79,642 (65,063-95,509) 1.21 (1.10-1.35)

Port-au-Prince, Haiti, 2010-2011

We fit our model to suspected cholera cases (hospitalized and not hospitalized) extracted from MSPP reports
(downloaded from http://mspp.gouv.ht/site/downloads/) from 22-October-2010 through 30-September-
2011. We built upon the model used to fit Zimbabwe data, and added two additional components, a seasonal forc-
ing function, and a constant rate of introductions of infectious cases into the city from elsewhere in the country.
We added the seasonal forcing function to capture seasonal effects (some have shown it related to seasonal rain-
fall8) and, to some degree, the time-varying effects of cholera control interventions put in place. We modeled this
as a periodic basis spline with 6 basis functions and 6 degrees of freedom (fitted value shown in green in Figure
S3-4). We fit the components of these additional parameters within the same maximum likelihood framework
as the other models using the mif algorithm. Estimated and assumed parameters are shown in Table S3-4, and
results from simulations for unvaccinated scenarios are shown in Figures S3-4 and S3-5.

We started the estimation from multiple starting locations

Table S3-4: Parameters for stochastic model fit to Port au Prince, Haiti epidemic. The initial susceptible fraction
of the population was calaibrated using a modified mif algorithm within the pomp package and found to be 0.97.

Parameter Desc. Value (Nominal 95% CI) Source
β1 Transmission parameter (1st component of basis spline) 0.826 fit
β2 Transmission parameter (2nd component of basis spline) 0.569 fit
β3 Transmission parameter (3rd component of basis spline) 0.286 fit
β4 Transmission parameter (4th component of basis spline) 0.546 fit
β5 Transmission parameter (5th component of basis spline) 0.633 fit
β6 Transmission parameter (6th component of basis spline) 0.114 fit
ι External introduction rate 2.88 × 10−12 fit
γ Rate of recovery from infectiousness 0.50 9

σ Rate of becoming infectious 0.71 6

θ Dispersion parameter for reporting 10.00 assumed
ρ Mean probability of an infection being observed 0.91 fit
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Figure S3-4: Fit of model to epidemic data from
Port au Prince. Green dashed line illustrates the
seasonal forcing function (secondary y-axis is the
time varying basic reproductive number.)
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Figure S3-5: Distribution of final epidemic size of
simulations compared to the reported number of
cholera cases in Port au Prince (orange line)

We based our main vaccination scenario on the timing of a PAHO meeting convened to re-discuss the use of
vaccine on December 17, 2010,10 and assumed that vaccination could have started 3 days later on December 20,
2010. Epidemic trajectories from specific simulations are shown in Figure S3-6.
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Figure S3-6: Illustration of individual simulation trajectories in unvaccinated and vaccinated (one and two-dose
campaigns) scenarios in Port-au-Prince. Bold lines represent the mean of simulations (as shown in the main
manuscript) and lighter lines represent individual simulation trajectories.

Table S3-5 shows the results from simualtions where a single dose is 50% more and 50% less protective than in
the main analysis. This highlights that a more protective single dose will shift the preferred strategy towards the
use of one dose where as a less protective single dose does the opposite. However as seen in the other modeled
settings, even with a vaccine with 22% efficacy, we find that there is no significant difference between the cases
averted with one- and two-dose regimens.
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Table S3-5: Results Cases Averted with Alternative RSEs in Port-au-Prince.

RSE (1-dose VE) Mean Cases Averted (95% PI) Ratio of Cases Averted (95% PI)
0.28 (0.22) 69,815 (48,718-91,757) 0.98 (0.91-1.05)
0.86 (0.83) 82,051 (61,167-103,768) 1.06 (1.02-1.11)

With noisy data from a single epidemic, it is challenging to fit multiple co-linear parameters to the data. While
we present results from the model with the highest liklihood, we explored the parameter space for alternative
models and show that very similar estimates can be drawn from these models. Table S3-6 shows the next 5 best
fitting model parameter sets (highest log-likelihood at the top) and the resulting estimate of the mean ratio of
cases averted from 1- compared to 2-dose campaigns.

Table S3-6: Estimates of the Mean Ratio of Cases Averted with single-dose compared to two-dose campaigns for
alternative models with lower log-likelihood than the main model used in the analysis (first column). Additional
columns show estimates of the basic reproductive number (R0) and model paramters for each.

Ratio of Cases Averted (95% PI) R0 β1 β2 β3 β4 β5 β6 ι ρ S(0)
1 1.04 (1.00-1.09) 1.2 0.75 0.61 0.19 0.63 0.48 0.24 5.041e-11 0.99 0.9995
2 1.06 (1.00-1.12) 1.2 0.68 0.69 0.13 0.63 0.52 0.22 1.948e-09 0.94 0.9996
3 1.06 (1.02-1.11) 1.1 0.65 0.55 0.36 0.42 0.61 0.24 4.336e-11 0.86 0.9996
4 1.06 (0.98-1.17) 1.3 0.81 0.72 0.01 0.70 0.59 0.08 2.146e-10 0.93 0.9995
5 1.16 (1.03-1.32) 1.1 0.83 0.38 0.59 0.05 0.83 0.10 6.675e-11 0.99 0.9995

Conakry City, Guinea, 2012

We used a similar approach to fitting data from Conakry City, Guinea as we did for Zimbabwe. Due to the
sputtering cases between 29-May-2012 and the end of June-2012, we fit the model starting on 30-June-2012,
when the epidemic began to take off. In our vaccination scenarios we started the simulations at epidemic day
60 (27-July-2012) with the initial state of the system estimated from particle filtering of uncontrolled epidemics.
Model parameters are shown in Table S3-7.

Table S3-7: Parameters for stochastic model fit to Conakry epidemic. The initial susceptible fraction of the
population was calaibrated using a modified mif algorithm within the pomp package and found to be 0.30 in
Guinea.

Parameter Desc. Value (Nominal 95% CI) Source
β Transmission parameter 2.36(2.12 − 2.39) fit
γ Rate of recovery from infectiousness 0.62(0.60 − 0.68) fit
σ Rate of becoming infectious 5.00 6

θ Dispersion parameter for reporting 20.00 Assumed
ρ Mean probability of an infection being observed 0.03 7
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Figure S3-7: Fit of model to epidemic data from
Conakry City.
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Figure S3-8: Distribution of final epidemic size of
simulations compared to the reported number of
cholera cases in Conakry (orange line)
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Figure S3-9: Illustration of individual simulation trajectories in unvaccinated and vaccinated (one and two-dose
campaigns) scenarios in Conakry City. Bold lines represent the mean of simulations (as shown in the main
manuscript) and lighter lines represent individual simulation trajectories.

In the main text we present vaccination simulations started on one specific day that we believed to be feasible,
however, many factors contribute to when a vaccination campaign begins. Table S3-8 shows the cases averted
from one- and two-dose campaigns with different vaccination delays to illustrate how the impacts may differ from
those presented in the main text.
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Table S3-8: Cases averted by one- and two-dose vaccination campaigns in Conakry with vaccination start days.

mean (95% PI) mean (95% PI)
vaccination start day cases averted with one-dose ratio of cases averted 1-dose to 2-dose

40 3,975 (3,642-4,313) 1.10 (1.05-1.17)
55 3,393 (3,058-3,732) 1.16 (1.09-1.24)
70 1,865 (1,551-2,195) 1.25 (1.08-1.46)
85 749 (532-971) †

100 217 (116-322) †
115 64 (14-116) †

†In some simulations there were no cases averted in the two-dose scenario so this ratio is not calculated.

Table S3-9 shows the results from simualtions where a single dose is 50% more and 50% less protective than in
the main analysis. This highlights that a more protective single dose will shift the preferred strategy towards the
use of one dose where as a less protective single dose does the opposite. However as seen in the other modeled
settings, even with a vaccine with 22% efficacy, we find that there is no significant difference between the cases
averted with one- and two-dose regimens.

Table S3-9: Results Cases Averted with Alternative RSEs in Conakry.

RSE (1-dose VE) Mean Cases Averted (95% PI) Ratio of Cases Averted (95% PI)
0.28 (0.22) 1,863 (1,489-2,243) 1.00 (0.84-1.16)
0.86 (0.83) 3,200 (2,888-3,535) 1.18 (1.11-1.26)
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